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Abstract

The goal of this study is to derive a methodology for modeling the biological activity of non-nucleoside HIV Reverse Transcriptase (RT)
inhibitors. The difficulties that were encountered during the modeling attempts are discussed, together with their origin and solutions. With
the selected multivariate techniques: robust principal component analysis, partial least squares, robust partial least squares and uninformati
variable elimination partial least squares, it is possible to explore and to model the contaminated data satisfactory. It is shown that thes
techniques are versatile and valuable tools in modeling and exploring biochemical data.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction Over several years, many publications concerning inhi-
bition of Reverse Transcriptase and modelling biological
There are several proven drug targets for the treatmentactivity of inhibitors were published. The more recent
of HIV infection. One of them is Reverse Transcriptase publications present QSAR (quantitative structure—activity
(RT), which plays a vital role in the HIV life cycle. RT is  relationships) models relating biological activity of inhibitors
responsible for transcription of the viral single-stranded RNA and their structure, described by various descripfbrel].
into double-stranded DNA. After integration of the double- Here, our efforts to develop QSAR models of NNRTIs,
stranded DNA into the host cell genome, the infected cell can using the calculated interaction energies between a set of
perform the synthesis of peptides necessary for HIV replica- 202 inhibitors and the amino acids lining the NNRTI binding
tion. One strategy to stop HIV replication is to inhibit RT site as descriptors, are reported. The interaction energies are
with small molecules (inhibitors) belonging to the class of obtained after docking the inhibitors in the NNRTI binding
non-nucleotide RT inhibitors. These inhibit the RT enzyme site using a pharmacophore-based docking algorifiin
by binding to an allosteric binding site. The inhibitors are docked into seven instances of the HIV-RT
binding site, obtained from the complexes of the enzyme
* Corresponding author. Tel.: +48 32 359 12 46; fax: +48 32 259 99 78. with Se‘./en dlﬁgrent NNRTIs of which the structure h.as been
E-mail address: beata@us.edu.pl (B. Walczak). determined using X-ray crystallography. After docking, the
¥ Dr. Paul A.J. Janssen, founder of Janssen Pharmaceutica and mentoft€raction energies of the inhibitors with the amino acids
of the Center for Molecular Design, passed away on November 11, 2003. in the NNRT binding site are computed using molecular
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mechanics[6]. These interactions are splitted into the variable of theth object with the model built without thigh
interactions with the side chain and backbone moieties of sample.
the different amino acids, and into the Coulomb, Van der  An alternative to RMSECYV is thg? statistic:
Waals and hydrogen-bond components of these interactions. m . \2
The biological activity of the 202 inhibitors to be modeled ;2 — 1 _ iz (i = 3-i) (4)
are the 50% inhibitory concentrations, expressed agpIC i (i — y)?
against wild-type HIV and four mutant strains in a cell-based
assay7]. It is assumed that there exist a relation between the 2.2. Robust partial least squares
interaction energies and the biological activity. The stronger
interactions an inhibitor provides, the better its biological ~ PLS as aleast squares method is very sensitive to outliers,
activity should be. i.e. objects not following the same model as the majority
The aim of this study is to construct a model for pre- Of the data. The outlying objects in tiyedirection can be
dicting the biological activity of an inhibitor based on the relatively easily identified, but the outlying objects in Ke
description of its interaction energies. During the modeling, SPace are not necessarily outliers from the calibration model.
different problems can be encountered, that may require spe-A distinction between good and bad leverage objects is pos-
cific approaches or strategies of model improvement. For Sible only in the calibration setting. Outliers in calibration
instance, the outlying observations and quality of the vari- cannot be identified by focussing on the residuals from the

ables are issues that should be taken into account. regression model already influenced by them, but they can
be found simply by the residuals from a robust model. In

our study, the Evolution Program (ER)3,14] was used to

2. Theory construct a robust PLS model. The idea of EP relies on an
optimization strategy, alike to a Genetic Algoritirb—17],
2.1. Partial least squares (PLS) aiming to find a subset of objects for which the fit and the

predictive power of the PLS model is optimal. EP works with
The goal of partial least squares (PLS) is to construct a lin- @ Population of solutions, coded as binary strings of length
ear model between a property of interest, called a dependenfdual to the number of objects in the data set. 1s in a string
variable,y, and a set of explanatory variablég, PLS min- stand for the model set objects. As an example, let us con-
imizes the sum of squared residuals between observed angider a string with 20 elements: [000001011010110
predictedy, by finding a limited set of orthogonal latent fac- 1 0 1 1 1]. The 1s in positions 6, 8, 9, 11, 13, 14, 16, 18, 19

tors, T, maximizing the covariance betwe&randy [8—10]. a}nd 20 means that the§e obj.ects are used for model constru_c—

The PLS model can be presented as: tion. This subset of objects is evaluated, based on model fit
and predictive ability. For data with outliers, this can be done

y=Tq+e=Xb+e (2) by calculating the sum of squared residuals for the assumed

) ) o ) _fraction of non-contaminated data, sorted according to their
whereq contains the regression coefficients associated with g ared residuals. The highest level of data contamination is
the latent PLS factorsT ande (m x 1) are the vectors of 4995 byt it can be assumed smaller. The user also declares
errors, X is the data matrix (n n), andb contains the  he highest complexity of the PLS mod#12%. For mobjects
regression coefficients related to theriginal variables. The i, the data set given the fraction of contaminagicand the
regression coefficients are computed as: maximal complexity of the modgl'® each subset of objects
selected for the model construction contaifisobjects. The

_ T -1 *
b=W({P'W) q @) valuem” is within the range:

whereW @s the mgtr[x of Ioadjngs obtained by maximizing M * & m(1— p) (5)
the covariance criterion, arRlis the product oX andT. .
To ensure a good predictive ability of the PLS model, The model built for then” objects is used to predigtfor all
the calibration set should represent all possible sources ofthe objectsin the data set. Tisquared residuals, (3 3;)?,
the data variance, and the number of PLS factors should beare sorted and the sum of the smallestAsquared residuals
optimized. In our study, the number of the PLS factors was is the fitness of the model:
evaluated by cross-validatigf]. The predictive ability of a .
model is expressed by the cross-validated root mean squard 'tNess= Gi =% (6)
error of prediction (RMSECV): Vi Jidiea
whereA is the fraction of the data with the-1p smallest
S i = $i)? residuals.
= (3) This strategy ensures that both the fit and the prediction are
taken into account in the model evaluation. For each selected
wherey; is the experimental value of the dependent variable of subset of objects, the model complexity is estimated with
theith object, and ”; is the predicted value of the dependent cross-validation.

RMSECV =

m
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The first population of strings is constructed randomly, but
the next ones are built based upon the fitness of the strings, or
models, in the previous population. The strings are selected
for reproduction according to the ‘roulette rule’ (randomly
but with a probability proportional to their fitness). The
selected strings are then modified and each string is replaced
by a random selection of” objects chosen from the-1p
objects with the lowest squared residuals in the previous
model (specific genetic operator of the EP approach).
The algorithm is stopped when a maximal number of
generations is reached or when a homogenous population is
obtained.

The subset of objects corresponding to the string with the
highest fitness is used for the construction of the robust model
and the detection of outliers in the calibration according to
the robust scale, proposed by Rousseeuw and Lj@&ly It
should be emphasized that the number of identified outliers
can be much smaller than the assumed fraction of data con-t-off value is defined as:
tamination. After removal of the outliers, the final PLS model

Fig. 1. Graphical representation of the UVE-PLS model.

is constructed and evaluated. cut-off = max (s(z+ 1 : n + k)) (8)
2.3. Uninformative variable elimination partial least i.e. the maximal value of the vectefn + 1:n + k) containing
squares (UVE-PLS) the stabilities of the regression coefficients associated with

thek noise variables.

A PLS calibration model can be much improved by All of the experimental variables with Stablllty of the
exc|uding uninformative variables that have h|gh variance regreSSion coefficients below the cut-off value are irrelevant
but small covariance with the dependent variapl®lodel to modely and are eliminated from the original data set,
improvement means a decrease of the complexity and/orbecause their information content is not higherthan the infor-
decrease of RMSECYV (increase of predictive ability). In our mation content of the random variables.
study, the uninformative variable elimination-partial least
squares approach (UVE-PLS), proposed by Centner et al.
[19] was used. This multivariate approach uses a cut-off
value for the PLS coefficients that is determined by adding
irrelevant variables to the original data and evaluating the
corresponding PLS coefficients. The data maXifn x n)
is augmented with a matriN (m x k) containing random
numbers with very small magnitude (of the order-19).

2.4. DATA

The explanatory variables of the HIV data are the calcu-
lated interaction energy matrices, obtained by docking 202
non-nucleoside RT inhibitors into seven Reverse Transcrip-
tase crystals, denoted as DTQ, DTT, EET, IKY, RT4, RT5
and TVR, respectivelfz0—24]. The interaction energy matri-

The number of new var_|ables,ought _to be higher than 300. ces contain the Van der Waals, Coulomb and hydrogen bond
These new random variables do notinfluence the PLS model.. : . R .
interaction energies of the inhibitors with the back bone and

The m vectors of regression coefficients, are calculated . s e L . . .
side-chain moieties of the individual amino acids compris-

with leave-one-out cross validation and saved into the matrix ; i~
: . . ing the target enzymes. The number and composition of the
B (m x n+k). Its firstn columns are the regression coeffi-

. . . ; amino acids in the crystals are not identical, and therefore,
cients related to the experimental variables, and tleenain- : : . .
) . ; . the number of interactions (variables) for each table is not
ing columns are related to the uninformative variables (see

Fig. 1) the same, but all of the energy tables have 202 rows (NNR-
The stability of the regression coefficient for gk vari- TIs). The unfolded energy tables contain in a total of 2304

able is then defined as: variables. .
The 202 NNRTIs belong to two chemical classes of
mearB(:, j) compounds, known as DATA and DAPY-like inhibitors.
= stdB(:, ) ™ The groups are represented by 78 and 124 NNRTIs,

respectively. The selected NNRTIs have high inhibitory
where meaB(:,j) is the mean value of the elements of the  activities against the wild-type HIV and four mutant strains
Jjth column ofB, and stdB(:j) is the standard deviation of the (181C, 103N, 100l and 188L). The inhibitory activities,
m elements of thg¢th column ofB. expressed as pHg for each HIV virus vary between 5.5
Thek noisy variables are irrelevant to modeland thus, and 9.5, 4.2 and 9.6, 4.3 and 9.5, 4.3 and 8.9, and 4.3-8.7,
to discriminate stable and unstable regression coefficients, arespectively.
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3. Results and discussion the interaction energies for each inhibitor in every crystal.
For the studied data, the obtained histograms do not indicate
For modeling the multivariate biochemical data, aproperty high leverages iiX-space.
of interest (biological activity of inhibitorsly, is predicted It is important to point out that leverages X do not
based on a set of explanatory varialg&e. calculatedinter-  always have a negative effect on the regression model, and
action energies between an inhibitor and the amino acids inthat it is necessary to distinguish between ‘good’ and ‘bad’
the RT pocket. The multivariate nature of the HIV data and the leverages. In our applicationsm, a good leverage would be
high correlation among explanatory variables suggest PLS asan inhibitor that provides strong interactions, atypical for
a pioneer modeling technique. Our data set consists of fiveother inhibitors inX-space. A bad leverage is an inhibitor
biological activities determined for wild type and four mutant that is far from the others in the-space as a result of wrong
strains of the HIV virus and seven tables of energies, one for docking. To check the presence of leverageXinrobust
every crystal structure of the RT pocket (DTQ, DTT, EET, PCA[25,26]can be applied. This method offers the oppor-
IKY, RT4, RT5 and TVR). Therefore, different PLS models tunity to detect leverages based on the so-called robust and
can be built. For brevity, only the PLS models constructed for orthogonal distances, and constructs a set of robust principal
the mean biological activity using all crystals simultaneously components not affected by them. The leverages are found
and the biological activity for each HIV type using all crys- as those that exceed a cut-off value proposed by Hubert and
tals simultaneously are discussed. There are other options, folEngelen[27]. If a sample has high orthogonal and robust
instance, to predict the mean activity using separate crystals.distances, it does not fit the PCA model constructed for the
The PLS technique is not affected by an excess of explana-majority of the data. Objects with small orthogonal distances
tory variables so PLS can be directly applied to unfolded data, but large robust distances fit the PCA model well, even if
i.e., on a matriXxXu constructed by joining the energy tables they are far from the remaining objects in the PCA space. A
belonging to each of the seven binding pockets. visual inspection of the score plots of the two first robust PCs
The PLS model for the mean biological activity of obtained for the unfolded datXu, points out that several
inhibitors does not have a good predictive ability. Its DAPY-like inhibitors (0), numbers 104, 121, 180, 193 and
RMSECV andg? are 0.6910 and 0.3141, respectively. The 195 are far away from the group they should belong to (see
same problem is faced for models constructed for individual Fig. 2a).

activities. The RMSECVs angf values of the models vary This indicates that some of the inhibitors are possibly
from 0.6040 to 0.8577 and 0.1672 to 0.3421, respectively wrongly docked in crystals. The leverage diagnostic was
(seeTable 1). performed in the space of 11 robust principal components

One of the possible reasons of lack of model’s fit could be selected, based on the criterion that the sum of their eigen-
due to a non-linear relationship betwe¥mndy, and/or the values divided by the total sum of eigenvalues should exceed
presence of outlying observationsXrand/ory. Outliers inX 80% [25]. There are many inhibitors exceeding the cut-off
(so-called leverage objects) can occur either due to problemsvalue for both robust and orthogonal distances &Sge2b).
with the docking of an inhibitor into certain crystals or due to Inorderto be sure thatthe leverages found are due to improper
a unique interaction of an inhibitor with the RT amino acids. docking and not due to uniqueness of the inhibitors, the dock-
Often, verification of the outlying character of an inhibitor ing of each inhibitor was visually inspected for all of the
in X-space can be conducted with histograms for the sum of crystals. The overview of this study and more detailed infor-

Table 1
Overview of the PLS, EP and UVE-PLS modejsrépresents mean biological activity, apit-y5 the individual activities of the wild HIV type and its four
mutant strains)

Data PLS EP UVE-PLS
f RMSECV (4) f RMSECV (4) No. of outliers f RMSECV (4) No. of variables

y, Xu 3 0.6910 7 0.3618 40 4 0.3675 151
0.3141 0.7803 0.7732

y1,Xu 1 0.6040 9 0.3077 43 6 0.3132 83
0.1672 0.6832 0.6717

¥2,Xu 2 0.8577 8 0.4075 45 5 0.4331 73
0.3421 0.8022 0.8018

¥3,Xu 3 0.7773 9 0.4061 46 6 0.3932 116
0.3277 0.7441 0.7600

y4,Xu 1 0.7628 9 0.4002 46 4 0.3915 163
0.3150 0.7671 0.7771

¥5, Xu 4 0.7678 7 0.3986 42 6 0.4282 122

0.2944 0.7746 0.7399




58

T . T T T :
" DATA
3+ ¥ o 4
T il -
" .
er . § e .
.
4 .
. e s
.
8 1F _.- .. . oo,
. .
a g parim e MU ame o
‘ga‘ eas g 3L W L, '
2 . -i:. . o .
2 . . L. . " .
=i _ L -
hhd oo s ° s 5
. . A R
2L . - " .
1
FRCEE
3| . . 150 12f"
195.° %, =
-4 . L . L . . . s
-3 -2 -1 0 1 2 3 4
(a) Robust PC 1
9F T T T T T &
046
8 s
L 14 J
§ .. ] olidéi .
? Sl .41 * 195 |
6 162
a 8 . Jos 160
-— B . 877 22 «18Q
7]
_8 : . .: ..u' : '13_533:35 114
o 5 e e e Y 173
2 . ..‘:,\' . L -
® 4f : -
8 . o r'_' .o, . .
g . . g, " :
k7 3 ‘.o_. .-"... T . ® i
E P ) T Ha x
2 Te Eetael 2 B .
. oo .
<] b (] .
S . s
2 -
=
o] 81 184
or . e e sefs o us e =
2 3 4 5 6 7

(b)

Robust distance

Fig. 2. Robust PCA: (a) projection of inhibitors on the plane defined by the
first two robust principal components; (b) identification of leverage objects
based on orthogonal and robust distances.

mation about wrongly docked inhibitors is giverfig. 3and
Table 2, respectively.

As shown inFig. 3, there are difficulties in the dockings
of several inhibitors. For instance, far location of DAPY-like
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Fig. 3. Summary of wrongly docked molecules (denoted as black lines) in
seven studied RT crystals (DTQ, DTT, EET, IKY, RT4, RT5 and TVR).
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by wrong docking in three to five crystals. Docking is a very
difficult, crucial and sophisticated step. It requires an exhaus-
tive search of the best orientation of an inhibitor in the RT
pocket via an optimization proceduf&]. The landscape of
the potential solutions is dominated by sub-optimal solutions,
and thus, an optimization procedure can be easily trapped in
one of them. This can eventually result in a wrong orienta-
tion of the inhibitor in an RT pocket. Finding wrongly docked
inhibitors just based on the set of their interaction energies
is not always possible. Depending on the level of ‘outlying-
ness’, the inhibitor still can establish interactions with amino
acids in RT, but to a smaller degree. Some of the outliers are
relatively easy to find out. For instance, DATA or DAPY-like
inhibitors can be discriminated by the specific interactions
they provide. If the inhibitor belongs to DAPY-like inhibitors
and it differs much with the interaction energies that are typ-
ical for DAPY-like compounds, it can be considered as an
outlier.

The outliers iny are the result of the experimental error in
determining the biological activity. The biological activity of
inhibitors is studied in cell-based assdy$ One source of

inhibitors (numbers 104, 121, 180, 193 and 195) is causederroriny-space is a cell penetration effect. Before an inhibitor

Table 2
Overview of the quality of docking in seven crystals

Crystal Outliers No. of outliers
DTQ 1114 15242526 58 104 106 114 121 125 135 136 145 159 160 161 162 167 169 173 177 178 179 35
180 184 185 186 189 191 192 193 194 195
DTT 42 44 67 72 82104 116 119 136 170 180 195 12
EET 104 121 162 180 193 195 6
IKY 104 121 135 136 162 180 195 7
RT4 10111617 202932416072 7780200 13
RT5 202959 72 80 200 6
TVR 22242627404142 44477780104 110 114 121 125 135 136 145 157 158 159 160 161 162 167 42

169170173 178 180 184 185 188 189 190 191 192 193 195 198 201
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Fig. 4. Models for the unfolded energy tables and mean biological activity: (a) initial PLS model: mean activity obggeveechgan activity predicted based

on leave-20-out cross-validationdy); (b) EP model (robust PLS) with assumed faction of data contamination 25%: mean activity obg@rvednjean
activity predicted based on leave-20-out cross-validatieg); (c) UVE-PLS model after removing the outliers and the uninformative explanatory variables:
mean activity observed (y) vs. mean activity predicted based on leave-20-out cross-valigiatjon (

reaches RT, it has to penetrate the cell membrane to enter thdable 3 o N
cell, and at this stage, some of the inhibitors encounter dif- Results of PLS models for four biological activity contrastsc4

ficulties. For such inhibitors, the observed activity is smaller Data f RMSECV ()
than expected from the calculated interaction with the RT c¢1,Xxu 2 0.6500
enzyme. To eliminate the cell penetration effect, a loss of 0.3157
activity (a contrast), i.e., the difference between activity for ¢2-Xu 3 0.5139
the wild type, and activity for a mutant strain can be used. 3 XU 3 g'gggg
For these models, the RMSECVs agtlvalues vary from ' 0.2375
0.5139 to 0.6500 and 0.2375 to 0.3303, respectively (seecs,Xu 1 0.6042
Table 3). Although, working with contrasts instead of original 0.2525

activities eliminates one problem, the PLS models for four
contrasts and the unfoldé&ti shows no improvement, taking
into account a smaller variability of the contrasts compared structed. The expected data contamination was set to 25%.

to original activity. With the robust PLS approach, the data contamination can
Being aware of outliers presence in the data, the robustbe assumed to be high without a risk of throwing out too
PLS model for mean activity and unfold&iu was con-  many inhibitors. The final robust PLS models give evidence
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of smaller contamination in the data than assumed. For thestructed by the EP approach. Additional improvement of the

robust PLS model using mean activity, 40 inhibitors are found
as outliers in the calibration model, which corresponds to
19.80% of the data contamination. When robust PLS mod-
els are constructed using individual activities, in the extreme
case, 46 inhibitors were found as outliers in the calibration

model. This corresponds to 22.77% of the data contamina-

tion.

The robust approach allows an improvement of the initial
PLS models. Now, the RMSECV and tlyé values equal
to 0.3618 and 0.7803, respectively. This is 0.3292 gain in
terms of RMSECV and 0.4662 in termsg, as compared to
classical PLS (se&able 1). Without doubt, the robust model
describes the majority of the data well.

A model of biochemical data, as the one studied here,
having ¢° value above 0.70 (see E(4)) is considered as
a good one. The model can be further improved by vari-
able selection. To achieve this, a UVE-PLS model was con-
structed after removing outliers. 331 explanatory variables
were detected as informative variables by the UVE-PLS
method. The RMSECYV and thg values for the model are

equal to 0.3675 and 0.7732, respectively. Compared to the

EP model for mean activity, the UVE-PLS model has lower
complexity (se€lable landFig. 4). As an example, the ini-
tial model, EP and UVE-PLS models, constructed for mean
activity, are presented iRig. 4.

The overall results of the modeling of the individual activi-

model can be achieved by uninformative feature elimination
by means of UVE-PLS.
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