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The goal of this study is to derive a methodology for modeling the biological activity of non-nucleoside HIV Reverse Transcript
nhibitors. The difficulties that were encountered during the modeling attempts are discussed, together with their origin and solut
he selected multivariate techniques: robust principal component analysis, partial least squares, robust partial least squares and u
ariable elimination partial least squares, it is possible to explore and to model the contaminated data satisfactory. It is shown
echniques are versatile and valuable tools in modeling and exploring biochemical data.

2005 Elsevier B.V. All rights reserved.
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. Introduction

There are several proven drug targets for the treatment
f HIV infection. One of them is Reverse Transcriptase
RT), which plays a vital role in the HIV life cycle. RT is
esponsible for transcription of the viral single-stranded RNA
nto double-stranded DNA. After integration of the double-
tranded DNA into the host cell genome, the infected cell can
erform the synthesis of peptides necessary for HIV replica-

ion. One strategy to stop HIV replication is to inhibit RT
ith small molecules (inhibitors) belonging to the class of
on-nucleotide RT inhibitors. These inhibit the RT enzyme
y binding to an allosteric binding site.

∗ Corresponding author. Tel.: +48 32 359 12 46; fax: +48 32 259 99 78.
E-mail address: beata@us.edu.pl (B. Walczak).

� Dr. Paul A.J. Janssen, founder of Janssen Pharmaceutica and mentor
f the Center for Molecular Design, passed away on November 11, 2003.

Over several years, many publications concerning
bition of Reverse Transcriptase and modelling biolog
activity of inhibitors were published. The more rec
publications present QSAR (quantitative structure–act
relationships) models relating biological activity of inhibit
and their structure, described by various descriptors[1–4].
Here, our efforts to develop QSAR models of NNRT
using the calculated interaction energies between a s
202 inhibitors and the amino acids lining the NNRTI bind
site as descriptors, are reported. The interaction energi
obtained after docking the inhibitors in the NNRTI bind
site using a pharmacophore-based docking algorithm[5].
The inhibitors are docked into seven instances of the HIV
binding site, obtained from the complexes of the enz
with seven different NNRTIs of which the structure has b
determined using X-ray crystallography. After docking,
interaction energies of the inhibitors with the amino a
in the NNRT binding site are computed using molec

039-9140/$ – see front matter © 2005 Elsevier B.V. All rights reserved.
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mechanics[6]. These interactions are splitted into the
interactions with the side chain and backbone moieties of
the different amino acids, and into the Coulomb, Van der
Waals and hydrogen-bond components of these interactions.

The biological activity of the 202 inhibitors to be modeled
are the 50% inhibitory concentrations, expressed as pIC50
against wild-type HIV and four mutant strains in a cell-based
assay[7]. It is assumed that there exist a relation between the
interaction energies and the biological activity. The stronger
interactions an inhibitor provides, the better its biological
activity should be.

The aim of this study is to construct a model for pre-
dicting the biological activity of an inhibitor based on the
description of its interaction energies. During the modeling,
different problems can be encountered, that may require spe-
cific approaches or strategies of model improvement. For
instance, the outlying observations and quality of the vari-
ables are issues that should be taken into account.

2. Theory

2.1. Partial least squares (PLS)

The goal of partial least squares (PLS) is to construct a lin-
ear model between a property of interest, called a dependent
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variable of theith object with the model built without theith
sample.

An alternative to RMSECV is theq2 statistic:

q2 = 1 −
∑m

i=1(yi − ŷ−i)2∑m
i=1(yi − ȳ)2

(4)

2.2. Robust partial least squares

PLS as a least squares method is very sensitive to outliers,
i.e. objects not following the same model as the majority
of the data. The outlying objects in they direction can be
relatively easily identified, but the outlying objects in theX-
space are not necessarily outliers from the calibration model.
A distinction between good and bad leverage objects is pos-
sible only in the calibration setting. Outliers in calibration
cannot be identified by focussing on the residuals from the
regression model already influenced by them, but they can
be found simply by the residuals from a robust model. In
our study, the Evolution Program (EP)[13,14] was used to
construct a robust PLS model. The idea of EP relies on an
optimization strategy, alike to a Genetic Algorithm[15–17],
aiming to find a subset of objects for which the fit and the
predictive power of the PLS model is optimal. EP works with
a population of solutions, coded as binary strings of length
equal to the number of objects in the data set. 1s in a string
s con-
s 1 0
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ariable,y, and a set of explanatory variables,X. PLS min-
mizes the sum of squared residuals between observe
redictedy, by finding a limited set of orthogonal latent fa

ors,T, maximizing the covariance betweenX andy [8–10].
he PLS model can be presented as:

= Tq + e = Xb + e (1)

hereq contains the regression coefficients associated
he latent PLS factors;T and e (m × 1) are the vectors o
rrors, X is the data matrix (m× n), and b contains the
egression coefficients related to then original variables. Th
egression coefficients are computed as:

= W(PTW)
−1

q (2)

hereW is the matrix of loadings obtained by maximizi
he covariance criterion, andP is the product ofX andT.

To ensure a good predictive ability of the PLS mo
he calibration set should represent all possible sourc
he data variance, and the number of PLS factors shou
ptimized. In our study, the number of the PLS factors
valuated by cross-validation[9]. The predictive ability of a
odel is expressed by the cross-validated root mean s
rror of prediction (RMSECV):

MSECV=
√∑m

i=1(yi − ŷ−i)2

m
(3)

hereyi is the experimental value of the dependent variab
heith object, and ˆy−i is the predicted value of the depend
tand for the model set objects. As an example, let us
ider a string with 20 elements: [0 0 0 0 0 1 0 1 1 0 1 0 1
0 1 1 1]. The 1s in positions 6, 8, 9, 11, 13, 14, 16, 18
nd 20 means that these objects are used for model con

ion. This subset of objects is evaluated, based on mod
nd predictive ability. For data with outliers, this can be d
y calculating the sum of squared residuals for the assu

raction of non-contaminated data, sorted according to
quared residuals. The highest level of data contaminat
9%, but it can be assumed smaller. The user also de

he highest complexity of the PLS model,fmax. For mobjects
n the data set, given the fraction of contaminationp and the

aximal complexity of the modelfmax, each subset of objec
elected for the model construction containsm* objects. The
aluem* is within the range:

max < m∗ � m(1 − p) (5)

he model built for them* objects is used to predicty for all
he objects in the data set. Them squared residuals, (yi − ŷi)2,
re sorted and the sum of the smallest 1− p squared residua

s the fitness of the model:

itness= 1

(yi − ŷi)2i ∈ A

(6)

hereA is the fraction of the data with the 1− p smalles
esiduals.

This strategy ensures that both the fit and the predictio
aken into account in the model evaluation. For each sel
ubset of objects, the model complexity is estimated
ross-validation.
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The first population of strings is constructed randomly, but
the next ones are built based upon the fitness of the strings, or
models, in the previous population. The strings are selected
for reproduction according to the ‘roulette rule’ (randomly
but with a probability proportional to their fitness). The
selected strings are then modified and each string is replaced
by a random selection ofm* objects chosen from the 1− p
objects with the lowest squared residuals in the previous
model (specific genetic operator of the EP approach).
The algorithm is stopped when a maximal number of
generations is reached or when a homogenous population is
obtained.

The subset of objects corresponding to the string with the
highest fitness is used for the construction of the robust model
and the detection of outliers in the calibration according to
the robust scale, proposed by Rousseeuw and Leroy[18]. It
should be emphasized that the number of identified outliers
can be much smaller than the assumed fraction of data con-
tamination. After removal of the outliers, the final PLS model
is constructed and evaluated.

2.3. Uninformative variable elimination partial least
squares (UVE-PLS)

A PLS calibration model can be much improved by
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Fig. 1. Graphical representation of the UVE-PLS model.

cut-off value is defined as:

cut-off = max (s(n+ 1 : n+ k)) (8)

i.e. the maximal value of the vectors(n + 1:n + k) containing
the stabilities of the regression coefficients associated with
thek noise variables.

All of the experimental variables with stability of the
regression coefficients below the cut-off value are irrelevant
to modely and are eliminated from the original data set,
because their information content is not higher than the infor-
mation content of the random variables.

2.4. DATA

The explanatory variables of the HIV data are the calcu-
lated interaction energy matrices, obtained by docking 202
non-nucleoside RT inhibitors into seven Reverse Transcrip-
tase crystals, denoted as DTQ, DTT, EET, IKY, RT4, RT5
and TVR, respectively[20–24]. The interaction energy matri-
ces contain the Van der Waals, Coulomb and hydrogen bond
interaction energies of the inhibitors with the back bone and
side-chain moieties of the individual amino acids compris-
ing the target enzymes. The number and composition of the
amino acids in the crystals are not identical, and therefore,
t not
t NR-
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c rs.
T TIs,
r tory
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( es,
e .5
a –8.7,
r

xcluding uninformative variables that have high varia
ut small covariance with the dependent variabley. Model

mprovement means a decrease of the complexity a
ecrease of RMSECV (increase of predictive ability). In
tudy, the uninformative variable elimination-partial le
quares approach (UVE-PLS), proposed by Centner
19] was used. This multivariate approach uses a cu
alue for the PLS coefficients that is determined by ad
rrelevant variables to the original data and evaluating
orresponding PLS coefficients. The data matrixX (m × n)
s augmented with a matrixN (m × k) containing random
umbers with very small magnitude (of the order 10−10).
he number of new variables,k, ought to be higher than 30
hese new random variables do not influence the PLS m
he m vectors of regression coefficients,b, are calculate
ith leave-one-out cross validation and saved into the m
(m × n + k). Its first n columns are the regression coe

ients related to the experimental variables, and thek remain-
ng columns are related to the uninformative variables
ig. 1).

The stability of the regression coefficient for thejth vari-
ble is then defined as:

j = meanB(:, j)

stdB(:, j)
(7)

here meanB(:,j) is the mean value of them elements of th
th column ofB, and stdB(:,j) is the standard deviation of t

elements of thejth column ofB.
Thek noisy variables are irrelevant to modely, and thus

o discriminate stable and unstable regression coefficie
he number of interactions (variables) for each table is
he same, but all of the energy tables have 202 rows (N
Is). The unfolded energy tables contain in a total of 2
ariables.

The 202 NNRTIs belong to two chemical classes
ompounds, known as DATA and DAPY-like inhibito
he groups are represented by 78 and 124 NNR
espectively. The selected NNRTIs have high inhibi
ctivities against the wild-type HIV and four mutant stra
181C, 103N, 100I and 188L). The inhibitory activiti
xpressed as pIC50 for each HIV virus vary between 5
nd 9.5, 4.2 and 9.6, 4.3 and 9.5, 4.3 and 8.9, and 4.3
espectively.
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3. Results and discussion

For modeling the multivariate biochemical data, a property
of interest (biological activity of inhibitors),y, is predicted
based on a set of explanatory variablesX, i.e. calculated inter-
action energies between an inhibitor and the amino acids in
the RT pocket. The multivariate nature of the HIV data and the
high correlation among explanatory variables suggest PLS as
a pioneer modeling technique. Our data set consists of five
biological activities determined for wild type and four mutant
strains of the HIV virus and seven tables of energies, one for
every crystal structure of the RT pocket (DTQ, DTT, EET,
IKY, RT4, RT5 and TVR). Therefore, different PLS models
can be built. For brevity, only the PLS models constructed for
the mean biological activity using all crystals simultaneously
and the biological activity for each HIV type using all crys-
tals simultaneously are discussed. There are other options, for
instance, to predict the mean activity using separate crystals.
The PLS technique is not affected by an excess of explana-
tory variables so PLS can be directly applied to unfolded data,
i.e., on a matrixXu constructed by joining the energy tables
belonging to each of the seven binding pockets.

The PLS model for the mean biological activity of
inhibitors does not have a good predictive ability. Its
RMSECV andq2 are 0.6910 and 0.3141, respectively. The
same problem is faced for models constructed for individual
a ry
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(
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p
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the interaction energies for each inhibitor in every crystal.
For the studied data, the obtained histograms do not indicate
high leverages inX-space.

It is important to point out that leverages inX do not
always have a negative effect on the regression model, and
that it is necessary to distinguish between ‘good’ and ‘bad’
leverages. In our applicationsm, a good leverage would be
an inhibitor that provides strong interactions, atypical for
other inhibitors inX-space. A bad leverage is an inhibitor
that is far from the others in theX-space as a result of wrong
docking. To check the presence of leverages inX, robust
PCA [25,26] can be applied. This method offers the oppor-
tunity to detect leverages based on the so-called robust and
orthogonal distances, and constructs a set of robust principal
components not affected by them. The leverages are found
as those that exceed a cut-off value proposed by Hubert and
Engelen[27]. If a sample has high orthogonal and robust
distances, it does not fit the PCA model constructed for the
majority of the data. Objects with small orthogonal distances
but large robust distances fit the PCA model well, even if
they are far from the remaining objects in the PCA space. A
visual inspection of the score plots of the two first robust PCs
obtained for the unfolded data,Xu, points out that several
DAPY-like inhibitors (o), numbers 104, 121, 180, 193 and
195 are far away from the group they should belong to (see
Fig. 2a).
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ctivities. The RMSECVs andq2 values of the models va
rom 0.6040 to 0.8577 and 0.1672 to 0.3421, respect
seeTable 1).

One of the possible reasons of lack of model’s fit coul
ue to a non-linear relationship betweenX andy, and/or the
resence of outlying observations inX and/ory. Outliers inX
so-called leverage objects) can occur either due to prob
ith the docking of an inhibitor into certain crystals or du
unique interaction of an inhibitor with the RT amino ac
ften, verification of the outlying character of an inhib

n X-space can be conducted with histograms for the su

able 1
verview of the PLS, EP and UVE-PLS models (ȳ represents mean bio
utant strains)

ata PLS EP

f RMSECV (q2) f RMSECV (q2)

,̄ Xu 3 0.6910 7 0.3618
0.3141 0.7803

1, Xu 1 0.6040 9 0.3077
0.1672 0.6832

2, Xu 2 0.8577 8 0.4075
0.3421 0.8022

3, Xu 3 0.7773 9 0.4061
0.3277 0.7441

4, Xu 1 0.7628 9 0.4002
0.3150 0.7671

5, Xu 4 0.7678 7 0.3986
0.2944 0.7746
This indicates that some of the inhibitors are poss
rongly docked in crystals. The leverage diagnostic
erformed in the space of 11 robust principal compon
elected, based on the criterion that the sum of their e
alues divided by the total sum of eigenvalues should ex
0% [25]. There are many inhibitors exceeding the cut
alue for both robust and orthogonal distances (seeFig. 2b).
n order to be sure that the leverages found are due to imp
ocking and not due to uniqueness of the inhibitors, the d

ng of each inhibitor was visually inspected for all of
rystals. The overview of this study and more detailed in

activity, andy1–y5 the individual activities of the wild HIV type and its fo

UVE-PLS

No. of outliers f RMSECV (q2) No. of variables

40 4 0.3675 151
0.7732

43 6 0.3132 83
0.6717

45 5 0.4331 73
0.8018

46 6 0.3932 116
0.7600

46 4 0.3915 163
0.7771

42 6 0.4282 122
0.7399
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Fig. 2. Robust PCA: (a) projection of inhibitors on the plane defined by the
first two robust principal components; (b) identification of leverage objects
based on orthogonal and robust distances.

mation about wrongly docked inhibitors is given inFig. 3and
Table 2, respectively.

As shown inFig. 3, there are difficulties in the dockings
of several inhibitors. For instance, far location of DAPY-like
inhibitors (numbers 104, 121, 180, 193 and 195) is caused

Fig. 3. Summary of wrongly docked molecules (denoted as black lines) in
seven studied RT crystals (DTQ, DTT, EET, IKY, RT4, RT5 and TVR).

by wrong docking in three to five crystals. Docking is a very
difficult, crucial and sophisticated step. It requires an exhaus-
tive search of the best orientation of an inhibitor in the RT
pocket via an optimization procedure[5]. The landscape of
the potential solutions is dominated by sub-optimal solutions,
and thus, an optimization procedure can be easily trapped in
one of them. This can eventually result in a wrong orienta-
tion of the inhibitor in an RT pocket. Finding wrongly docked
inhibitors just based on the set of their interaction energies
is not always possible. Depending on the level of ‘outlying-
ness’, the inhibitor still can establish interactions with amino
acids in RT, but to a smaller degree. Some of the outliers are
relatively easy to find out. For instance, DATA or DAPY-like
inhibitors can be discriminated by the specific interactions
they provide. If the inhibitor belongs to DAPY-like inhibitors
and it differs much with the interaction energies that are typ-
ical for DAPY-like compounds, it can be considered as an
outlier.

The outliers iny are the result of the experimental error in
determining the biological activity. The biological activity of
inhibitors is studied in cell-based assays[7]. One source of
error iny-space is a cell penetration effect. Before an inhibitor

Table 2
Overview of the quality of docking in seven crystals

Crystal Outliers No. of outliers

DTQ 11 14 15 24 25 26 58 104 106 114 121 125 135 136 1
180 184 185 186 189 191 192 193 194 195

DTT 42 44 67 72 82 104 116 119 136 170 180 195

EET 104 121 162 180 193 195

IKY 104 121 135 136 162 180 195

RT4 10 11 16 17 20 29 32 41 60 72 77 80 200

RT5 20 29 59 72 80 200

TVR 22 24 26 27 40 41 42 44 47 77 80 104 110 114 121 12
169 170 173 178 180 184 185 188 189 190 191 192 1
45 159 160 161 162 167 169 173 177 178 179 35

12

6

7

13

6

5 135 136 145 157 158 159 160 161 162 167
93 195 198 201

42
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Fig. 4. Models for the unfolded energy tables and mean biological activity: (a) initial PLS model: mean activity observed (y) vs. mean activity predicted based
on leave-20-out cross-validation (yCV); (b) EP model (robust PLS) with assumed faction of data contamination 25%: mean activity observed (y) vs. mean
activity predicted based on leave-20-out cross-validation (yCV); (c) UVE-PLS model after removing the outliers and the uninformative explanatory variables:
mean activity observed (y) vs. mean activity predicted based on leave-20-out cross-validation (yCV).

reaches RT, it has to penetrate the cell membrane to enter the
cell, and at this stage, some of the inhibitors encounter dif-
ficulties. For such inhibitors, the observed activity is smaller
than expected from the calculated interaction with the RT
enzyme. To eliminate the cell penetration effect, a loss of
activity (a contrast), i.e., the difference between activity for
the wild type, and activity for a mutant strain can be used.
For these models, the RMSECVs andq2 values vary from
0.5139 to 0.6500 and 0.2375 to 0.3303, respectively (see
Table 3). Although, working with contrasts instead of original
activities eliminates one problem, the PLS models for four
contrasts and the unfoldedXu shows no improvement, taking
into account a smaller variability of the contrasts compared
to original activity.

Being aware of outliers presence in the data, the robust
PLS model for mean activity and unfoldedXu was con-

Table 3
Results of PLS models for four biological activity contrastsc1–c4

Data f RMSECV (q2)

c1, Xu 2 0.6500
0.3157

c2, Xu 3 0.5139
0.3303

c3, Xu 3 0.5283
0.2375

c4, Xu 1 0.6042
0.2525

structed. The expected data contamination was set to 25%.
With the robust PLS approach, the data contamination can
be assumed to be high without a risk of throwing out too
many inhibitors. The final robust PLS models give evidence
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of smaller contamination in the data than assumed. For the
robust PLS model using mean activity, 40 inhibitors are found
as outliers in the calibration model, which corresponds to
19.80% of the data contamination. When robust PLS mod-
els are constructed using individual activities, in the extreme
case, 46 inhibitors were found as outliers in the calibration
model. This corresponds to 22.77% of the data contamina-
tion.

The robust approach allows an improvement of the initial
PLS models. Now, the RMSECV and theq2 values equal
to 0.3618 and 0.7803, respectively. This is 0.3292 gain in
terms of RMSECV and 0.4662 in terms ofq2, as compared to
classical PLS (seeTable 1). Without doubt, the robust model
describes the majority of the data well.

A model of biochemical data, as the one studied here,
having q2 value above 0.70 (see Eq.(4)) is considered as
a good one. The model can be further improved by vari-
able selection. To achieve this, a UVE-PLS model was con-
structed after removing outliers. 331 explanatory variables
were detected as informative variables by the UVE-PLS
method. The RMSECV and theq2 values for the model are
equal to 0.3675 and 0.7732, respectively. Compared to the
EP model for mean activity, the UVE-PLS model has lower
complexity (seeTable 1andFig. 4). As an example, the ini-
tial model, EP and UVE-PLS models, constructed for mean
activity, are presented inFig. 4.
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structed by the EP approach. Additional improvement of the
model can be achieved by uninformative feature elimination
by means of UVE-PLS.
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